4.7 Article

Analysis of operation performance of three indirect expansion solar assisted air source heat pumps for domestic heating

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 252, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2021.115061

Keywords

Solar assisted air source heat pump; Seasonal performance factor; Domestic heating; Solar thermal energy; Numerical simulation

Funding

  1. Joint PhD Studentship of China Scholarship Council (CSC)
  2. Queen Mary University of London

Ask authors/readers for more resources

To achieve the net-zero emissions goal in the UK by 2050, decarbonisation of domestic heating is crucial. Solar assisted air source heat pumps offer a promising alternative application under UK weather conditions. Different types of heat pumps show varying seasonal performance factors, with the serial type performing the best but requiring larger sizes of solar collector and thermal energy storage tank. Economic analyses suggest that parallel and dual-source heat pumps could be good replacements for gas-boiler heating systems.
To achieve the goal set for net-zero emissions of greenhouse gases in the UK by 2050, the domestic heating must be decarbonised. Solar assisted air source heat pumps, integrating solar collector, thermal energy storage tank and heat pump, offers a promising alternative application under the UK weather conditions. Literature review shows that investigations of solar assisted air source heat pumps in the regions like the UK are still insufficient. The serial, parallel and dual-source indirect expansion solar assisted air source heat pumps are modelled and simulated under the weather conditions in London using TRNSYS to investigate the operation performance over a typical year. These three heat pumps are applied to provide space heating and hot water of 300 L per day for a typical single-family house. The simulation results show comparisons of the three systems. The serial type heat pump shows the highest seasonal performance factor of 5.5, but requiring the largest sizes of the solar collector and thermal energy storage tank. The dual-source and parallel type heat pumps show slightly lower seasonal performance factors of 4.4 and 4.5, respectively, requiring smaller sizes of solar collector and thermal energy storage tank. Furthermore, the results show that the air source part contributes to an important proportion of the heat provision and stable operation of the systems. The yearly seasonal performance factor higher than 4.4 achievable by the three heat pumps suggests that they are potentially applied in the regions with relatively lower solar irradiance. The economic analyses indicate that the parallel and dual-source type heat pumps provide good alternatives to replace the gas-boiler heating system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available