4.5 Article

Analysing the Performance of Ammonia Powertrains in the Marine Environment

Journal

ENERGIES
Volume 14, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/en14217447

Keywords

ammonia; marine propulsion; shipping; decarbonisation; powertrain

Categories

Funding

  1. United States Naval Academy Alumni Association.

Ask authors/readers for more resources

This study develops system-level models of ammonia-fuelled powertrains for four oceangoing vessels and evaluates the efficacy of ammonia as an alternative marine fuel, with results indicating that internal combustion engines are more efficient. Most merchant vessels are strong candidates for ammonia fuelling if capacity losses can be overcome, while naval vessels are less likely to adopt ammonia powertrains without significant redesigns.
This study develops system-level models of ammonia-fuelled powertrains that reflect the characteristics of four oceangoing vessels to evaluate the efficacy of ammonia as an alternative fuel in the marine environment. Relying on thermodynamics, heat transfer, and chemical engineering, the models adequately capture the behaviour of internal combustion engines, gas turbines, fuel processing equipment, and exhaust aftertreatment components. The performance of each vessel is evaluated by comparing its maximum range and cargo capacity to a conventional vessel. Results indicate that per unit output power, ammonia-fuelled internal combustion engines are more efficient, require less catalytic material, and have lower auxiliary power requirements than ammonia gas turbines. Most merchant vessels are strong candidates for ammonia fuelling if the operators can overcome capacity losses between 4% and 9%, assuming that the updated vessels retain the same range as a conventional vessel. The study also establishes that naval vessels are less likely to adopt ammonia powertrains without significant redesigns. Ammonia as an alternative fuel in the marine sector is a compelling option if the detailed component design continues to show that the concept is practically feasible. The present data and models can help in such feasibility studies for a range of vessels and propulsion technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available