4.6 Article

Synthesis and optoelectronic and charge storage characterizations of conducting polymers based on tetraphenylethylene and thienothiophenes

Journal

ELECTROCHIMICA ACTA
Volume 392, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2021.139020

Keywords

Tetraphenylethylene; Thienothiophene; Charge storage; Conducting polymers

Funding

  1. Higher Education Council of Turkey (YOK)
  2. TUBITAK
  3. National Center for High Performance Computing of Turkey (UHeM)
  4. Unsped Global Lojistik

Ask authors/readers for more resources

The synthesis of four monomers containing thienothiophene (TT) and tetraphenylethylene (TPE) units was achieved through Suzuki coupling reaction. The properties of resulting electropolymers were investigated. Electrochemical and in-situspectrophotometric measurements were conducted to study the capacitive and electrochromic properties of the polymers.
Syntheses of four monomers (Z-TTpTPE, A-TTpTPE, Z-Th2TTpTPE and A-Th2TTpTPE), possessing thienothiophene (TT) and tetraphenylethylene (TPE) units, were achieved by Suzuki coupling reaction, starting from two isomers of TT, namely, thieno[3,2-b]thiophene (ZIT) and thieno[2,3-b]thiophene (ATT). This is the first report that TPE has been attached on to two analogues of TT, i.e. cross conjugated and conjugated, through phenyl moiety and the properties of the resultant electropolymers were investigated. While the corresponding polymer films, i.e. P[Z-TTpTPE], P[Z-Th2TTpTPE] and P[A-Th2TTpTPE] were obtained, the monomer A-TTpTPE did not form any polymer on the electrode surface. Capacitive and electrochromic properties of the resultant polymers were investigated by electrochemical and in-situspectrophotometric measurements. Electrochemical polymerization mechanism was investigated at DFT level, the results of which suggested that although A-Th2TTpTPE and Z-Th2TTpTPE had enough spin density on their peripheral alpha-carbons, Z-TTpTPE and A-TTpTPE did not. Optical band gaps of P[Z-Th2TTpTPE] and P[A-Th2TTpTPE] were determined to be 1.89 and 2.23 eV. Electrochromic behaviors of the polymers suggested that P[Z-Th2TTpTPE] has promising electrochromic properties with high coloration efficiency of 309 cm(2) C-1. Low frequency capacitance (C-LF) values at different E-DC potentials were calculated. The shape of the capacitance-potential graph was found to be in a good agreement with CV of the polymer films, and the highest capacitance values were obtained at their peak potentials. Electrical equivalent circuits were applied to explain the parameters of each element obtained from the experimental electrochemical impedance spectroscopy (EIS). Energy and power densities were calculated from the galvanostatic charge-discharge (GCD) curves. P[Z-Th2TTpTPE] showed a higher energy density compared to P[A-Th2TTpTPE], possibly due to its reversible redox behavior, porous structure, and good roughness, which was supported by CV and AFM measurements. All results suggested that electronic and optical properties of TT were improved by inclusion of TPE, and further enhancement was achieved by attachment of two thiophene rings to the peripherals of the monomers. All the polymers demonstrated promising properties for electrochromic and charge storage applications. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available