4.7 Article

Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 226, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2021.112826

Keywords

Green synthesis; Magnetite; Levofloxacin; Moringa olifera; Kinetics; Isotherm

Funding

  1. Higher Education Commission, Pakistan [20-4155/RD/HEC/14]
  2. King Saud University, Riyadh, Saudi Arabia [RSP-2021/367]

Ask authors/readers for more resources

This study successfully removed levofloxacin from aqueous solution using green-synthesized nanoparticles from Moringa oleifera, achieving high efficiency. Kinetic and isotherm modeling indicated that the removal process of levofloxacin followed a pseudo-second-order model and the Freundlich model. Reusability experiments showed that the adsorbent has high potential for repeated use.
Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 - gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution. The adsorbent magnetite nanoparticles (Fe3O4) were prepared by green synthesis using Moringa olifera and coprecipitation method. Characterizations analyses of both chemically and green synthesized nanoparticles were performed by SEM, XRD, and FTIR. The average crystallite size of gINPs was 14.34 nm and chemically synthesized was 18.93 nm. The performance of the synthesized product was evaluated by adsorption capacity and removal efficiency. The parameters considered included adsorbent (gINPs) dosage, initial concentration of adsorbate, pH, contact time, and temperature. The obtained data were fitted to kinetic and isotherm models to determine the mechanism. Adsorption batch experiments were conducted to determine the reaction mechanism by studying kinetics while fitting isotherm models for samples analyzed using HPLC at 280 nm. Results showed that 86.15% removal efficiency of 4 mg L-1 levofloxacin was achieved by 100 mg L-1 gINPs in 24 h contact time when all other parameters (pH 7, temperature 25 degrees C) were kept constant. The maximum adsorption capacity achieved at equilibrium was 22.47 mg/g. Further, it was identified as a pseudo-second-order model with R-2 = 0.965 for adsorption kinetics while isotherm data better fitted to the Freundlich model compared to Langmuir isotherm with R-2 = 0.994. The potential pathway determined for levofloxacin removal was chemisorption with minor diffusion, multilayer, spontaneous and exothermic processes on the gINPs (Fe3O4). Reusability experiments were conducted in four cycles and removal efficiency varied from 85.35% to 80.47%, indicating very high potential of the adsorbent for re-use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available