4.7 Article

Gestational exposure to PM2.5 leads to cognitive dysfunction in mice offspring via promoting HMGB1-NLRP3 axis mediated hippocampal inflammation

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 223, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2021.112617

Keywords

Inflammasome; Inflammatory response; Neuroinflammation; Microglia activation; Cognitive impairment

Funding

  1. Shandong Provincial Natural Science Foundation, China [ZR2018MC012]
  2. neurologic disorders and regenerative repair lab and 13th Five-Year Plan key lab of Shandong higher education

Ask authors/readers for more resources

Gestational exposure to PM2.5 activates the HMGB1-NLRP3 pathway in the hippocampus of mice offspring, leading to cognitive impairment. Down-regulation of HMGB1 during pregnancy can alleviate the resulting damage, inhibit inflammation, and mitigate cognitive decline.
PM2.5 is recently identified as a kind of material possessing severe biohazard. It can enter human body and exerts pathological effects on lung, eyes, and the central nervous system (CNS). Maternal exposure to PM2.5 can affect neural development and cause cognitive decline in offspring, with the underlying mechanisms unclear, however. The inflammasome monitors and responds to biological stressors, with HMGB1-NLRP3 inflammatory axis as an essential pathophysiological player outside the brain. The present work is to investigate its role in cognitive impairment induced by gestational exposure to PM2.5 in mice offspring. We found that HMGB1-NLRP3 pathway was activated in the hippocampus of mice offspring by gestational exposure to PM2.5 in a dose-dependent manner, with protein levels of HMGB1, NLRP3, and cleaved caspase-1 as approximately three times as high as those of control. And down-regulating HMGB1 during pregnancy could alleviate the resultant impairment on learning and working memory as well as hippocampal neurons, up-regulate the synapse related proteins of SYP and PSD-95 and correct the increased expression of 5-HT2A to comparable levels to control, as well as inhibiting the activation of microglia and decreasing the expression of HMGB1 and Iba1/HMGB1 double positive cells in the hippocampus of mice offspring. Meanwhile, protein levels of NLRP3, cleaved caspase-1, IL-1 beta and IL-18, as well as TLR4, phosphorylated NF-Kappa B, and MAPKs, were almost down-regulated to those of control. Therefore, HMGB1 intervention inhibits the NLRP3 inflammasome mediated hippocampal inflammatory response through TLR4/MAPKs/NF-Kappa B signaling pathway, alleviating PM2.5-induced cognitive dysfunction. Further in vitro results suggest that PM2.5 can activate microglia and HMGB1-NLRP3 inflammatory axis. Pretreatment with HMGB1 inhibitor significantly reduced the phosphorylation of MAPKs and NF-Kappa B, and inhibited the inflammatory response mediated by NLRP3 inflammasome similarly to those in vivo. These results suggest that PM2.5 exposure promotes the inflammatory response in hippocampus mediated by HMGB1-NLRP3 inflammatory axis in microglia, resulting in cognitive dysfunction in offspring, which could be alleviated by simultaneous HMGB1 suppression. These findings provide a theoretical basis for preventing cognitive impairment in offspring caused by environmental pollution during pregnancy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available