4.7 Article

The first comprehensive study evaluating the ecotoxicity and biodegradability of water-soluble polymers used in personal care products and cosmetics

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 228, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2021.113016

Keywords

Aquatic toxicity; Biodegradation; Polyacrylic acid; Water-soluble polymers

Funding

  1. Slovenian Research Agency [P2-0191, J2-2491]

Ask authors/readers for more resources

Four water-soluble polymers (WSPs) based on polyacrylic acid were tested for their ecotoxicity and biodegradability, with the liquid WSP showing specific toxic effects on bacteria and nitrifying microorganisms. All investigated WSPs were found to be non-biodegradable.
Water-soluble polymers (WSPs) are organic materials that have been used for decades in various applications as part of paints, coatings, adhesives, washing agents, pharmaceuticals, personal care products and cosmetics. However, their ecotoxicity, biodegradability, and overall impact on the environment are still unknown. In this study four polyacrylic acid- based WSPs (three in the solid state and one in the liquid state), which are widely used in cosmetic industry, were tested in terms of their ecotoxicity and biodegradability. The ecotoxicity tests were performed using aquatic plant Lemna minor, microalga Pseudokirchneriella subcapitata, crustacean Daphnia magna, bacterium Allivibrio fischeri, and a mixed bacterial culture of activated sludge (with heterotrophic and nitrifying microorganisms tested separately). All four WSPs had low or moderate effects on the tested organisms at several endpoints. However, the liquid WSP had a specific toxic effect on the bioluminescence of Allivibrio fischeri and the oxygen consumption of nitrifying microorganisms - 100 mg/L caused 73% and 88% inhibition, respectively. Therefore, some WSPs capable of inhibiting nitrifying microorganisms could have implications for the nitrification process in wastewater treatment plants and aquatic ecosystems, despite 100 mg/L being a high tested concentration and probably difficult to reach in wastewater. All investigated WSPs were not biodegradable; therefore, their persistence in the environment could be expected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available