4.7 Article

The competing effects of terrestrial evapotranspiration and raindrop re-evaporation on the deuterium excess of continental precipitation

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 572, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2021.117120

Keywords

precipitation; deuterium excess; evapotranspiration; raindrop re-evaporation; vapor transport model; South America

Funding

  1. UMass Faculty Startup Fund

Ask authors/readers for more resources

The passage discusses the variations in precipitation d-excess in terrestrial environments and the underlying reasons, including factors such as moisture recycling and raindrop re-evaporation. It also notes the lack of quantitative research on these variations.
The deuterium excess (d-excess) of precipitation, which tracks kinetic fractionations during water phase changes, has been used to trace the regions and conditions of oceanic moisture sources, in particular from polar ice-core records. Still, many observations suggest that precipitation d-excess varies significantly across terrestrial environments, both above and below the global average value 10. These variations are often interpreted to reflect either moisture recycling via terrestrial evapotranspiration or sub-cloud raindrop re-evaporation, respectively. Despite being frequently mentioned in literature, however, little work has been carried out to quantify these two competing effects on the widespread variations of d-excess. Here, we use a one-dimensional model of water vapor transport to interrogate the relative controls on d-excess of continental precipitation. We show that when the water vapor gradient is coupled with decreasing temperature, d-excess increases with net rainout and delta O-18 depletion along the model transect, while the magnitude of increase is controlled by the water balance, evaporation/transpiration ratio, and transport type. Raindrop re-evaporation functions as an additional flux of recycled moisture and further increases the d-excess downwind. Alternatively, when the water vapor gradient is coupled with decreasing relative humidity, d-excess may decrease along the model transect wherein upwind evapotranspiration is overwhelmed by local raindrop re-evaporation effects. This local effect becomes even stronger under a regime of turbulent eddy transport with high transpiration fractions, resulting in a pronounced decrease of d-excess without notable changes in delta O-18. Finally, we demonstrate that model processes capture the isotopic variations in precipitation across the altitudinal gradient of the Andes as well as the South American low-level jet zone. Broadly, this study presents a novel framework for understanding the dynamical controls of precipitation d-excess and for linking spatial isotopic variations with ecohydrological fluxes and processes in both modern and paleo-environments. (C) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available