4.2 Article

Abnormal B-lymphoblasts in myelodysplastic syndromes and myeloproliferative neoplasms other than chronic myeloid leukemia

Journal

CYTOMETRY PART B-CLINICAL CYTOMETRY
Volume 104, Issue 3, Pages 243-252

Publisher

WILEY
DOI: 10.1002/cyto.b.22047

Keywords

B lymphoblast; lineage infidelity; mixed phenotype acute leukemia; myelodysplastic syndrome; myeloproliferative neoplasm

Ask authors/readers for more resources

Lineage infidelity, characterized by abnormal immature B lineage output, is rare but detectable in patients with MDS and non-CML MPN. Most cases with abnormal B-lymphoblast populations remain stable or disappear, with only a small percentage progressing to B-ALL. Further investigation is needed to understand the underlying disease biology and its implications for patient management.
Background Lineage infidelity is characteristic of mixed phenotype acute leukemia and is also seen in blast phase of chronic myeloid leukemia (CML), myeloid/lymphoid neoplasia with eosinophilia and gene rearrangements, and subtypes of acute myeloid leukemia. Driver genetic events often occur in multipotent progenitor cells in myeloid neoplasms, suggesting that multilineage output may be more common than appreciated. This phenomenon is not well studied in myelodysplastic syndrome (MDS) and non-CML myeloproliferative neoplasms (MPN). Methods We systematically evaluated phenotypic lineage infidelity by reviewing bone marrow pathology and flow cytometry (FC) studies of 1262 consecutive patients with a diagnosis of MDS and/or non-CML MPN. We assessed B- and T-cells in these patients by FC. When abnormal B-lymphoblast (ABLB) populations were detected, we additionally evaluated immature B-cells using a high sensitivity FC assay for B-lymphoblastic leukemia/lymphoma (B-ALL). Results We identified 9 patients (7 MDS, 7/713, 1%; 2 non-CML MPN, 2/312, 0.6%; 0 in MDS/MPN) with low-level ABLB populations (0.012%-3.6% of WBCs in marrow) with abnormal immunophenotypes. Genetic studies on flow sorted cell populations confirmed that some ABLB populations were clonally related to myeloid blasts (4/6, 67%). On follow-up, ABLB populations in 8/9 patients remained stable or disappeared. Only 1 case progressed to B-ALL. Conclusions These findings demonstrate that phenotypically detectable abnormal immature B lineage output occurs in MDS and non-CML MPN, albeit rarely. While presence of ABLB does not necessarily reflect blast crisis, the underlying disease biology of our findings may ultimately be relevant to patient management and warrants further investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available