4.5 Article

Privacy Preserving Deep Computation Model on Cloud for Big Data Feature Learning

Journal

IEEE TRANSACTIONS ON COMPUTERS
Volume 65, Issue 5, Pages 1351-1362

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TC.2015.2470255

Keywords

Smart city; big data; deep computation model; cloud computing; BGV encryption; BGN encryption; high-order back-propagation

Ask authors/readers for more resources

To improve the efficiency of big data feature learning, the paper proposes a privacy preserving deep computation model by offloading the expensive operations to the cloud. Privacy concerns become evident because there are a large number of private data by various applications in the smart city, such as sensitive data of governments or proprietary information of enterprises. To protect the private data, the proposed model uses the BGV encryption scheme to encrypt the private data and employs cloud servers to perform the high-order back-propagation algorithm on the encrypted data efficiently for deep computation model training. Furthermore, the proposed scheme approximates the Sigmoid function as a polynomial function to support the secure computation of the activation function with the BGV encryption. In our scheme, only the encryption operations and the decryption operations are performed by the client while all the computation tasks are performed on the cloud. Experimental results show that our scheme is improved by approximately 2.5 times in the training efficiency compared to the conventional deep computation model without disclosing the private data using the cloud computing including ten nodes. More importantly, our scheme is highly scalable by employing more cloud servers, which is particularly suitable for big data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available