4.7 Article

Characterizing the fatigue cracking behaviors of OGFC pavements using the overlay tester

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 307, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2021.124979

Keywords

OGFC; Fatigue; Overlay tester; Damage factor; Cracking rate index

Funding

  1. Na-tional Natural Science Foundation of China [51778638, 52008405]

Ask authors/readers for more resources

This study evaluated the fatigue performance of OGFC-AC composite specimens, finding that contaminants can weaken peak tensile stress and a power exponential relation exists between dissipated energy and load cycles. OGFC13 showed superior fatigue cracking resistance, and an optimal tack coat application rate of 0.4 kg/m(2) was identified for OGFC-AC composites.
The objective of this study was to evaluate the fatigue performance of the composite specimens combined by OGFC and the underlying dense-graded layer (OGFC-AC) by conducting overlay tester (OT) tests. Other two types of specimens, including single layer OGFC13 and single layer AC20, were fabricated to make comparable analysis with OGFC-AC composites. For OGFC-AC specimens, the effects of tack coat application rate and contaminations (soil and oil) were quantificationally explored. Peak tensile stress, cracking rate index (CRI), and dissipated energy were obtained and analyzed. Meanwhile, the damage propagation during the fatigue tests were analyzed using a damage factor. Results indicated that the peak tensile stresses of OGFC-AC composites were somewhere between OGFC13 and AC20. Contaminations would attenuate the peak tensile stress. There existed a power exponential relation between dissipated energy and the load cycle. CRI and damage factor presented the same development law in demonstrating that the fatigue cracking resistance of OGFC13 was superior, followed by AC20, and the performance of OGFC-AC was inferior. The results of CRI and damage factor showed that an optimum tack coat application rate (0.4 kg/m(2)) existed at which the OGFC-AC composites presented the least cracking potential. The contamination of soil partially increased the cracking resistance, which was probably due to the fact that some sand particles in soil increased the friction and interlock effect between OGFC and the AC layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available