4.7 Article

Rheological behavior of high modulus asphalt binder and its indication for fracture performances

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 306, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2021.124835

Keywords

High modulus asphalt binder; Rheological behavior; Non-linear viscoelasticity; Fracture performance

Funding

  1. National Natural Science Foundation of China [52078047]

Ask authors/readers for more resources

The study demonstrates that, while high modulus asphalt concrete (HMAC) has significantly higher rutting resistance, its low cracking resistance due to low ductility and stress dissipation at the crack tip should be a concern when subjected to tensile loading in application.
High modulus asphalt concrete (HMAC) has been used as a high-quality road construction material to tackle permanent deformation of asphalt mixtures primarily due to its exceedingly high modulus. However, rheological behavior, especially non-linear rheological behavior, and fracture behavior of high modulus asphalt binder (HMAB) are not well studied yet. In this study, linear and non-linear rheological tests, and fracture energy density tests were conducted on three HMABs, one base asphalt binder and one styrene-butadienestyrene (SBS) modified asphalt binder. The results show that HMABs have significantly higher rutting resistance, even after experiencing non-linear viscoelastic deformation. However, low cracking resistance was observed for HMAB due to its low ductility and low stress dissipation at its crack tip. Therefore, cracking resistance of HMACs should be a concern if they're subjected to tensile loading in application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available