4.7 Article

A novel LBM-DEM based pore-scale thermal-hydro-mechanical model for the fracture propagation process

Journal

COMPUTERS AND GEOTECHNICS
Volume 139, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2021.104418

Keywords

THM coupling; Fracture propagation; LBM-DEM; Pore-scale

Funding

  1. National Natural Science Foundation of China [51936001, 51706021, 51804033]
  2. Beijing Youth Talent Support Program [CITTCD201804037]

Ask authors/readers for more resources

This study presents a pore-scale model combining LBM and DEM for accurately calculating fluid flow and temperature in rock fractures, considering anisotropic properties and using the principle of minimum potential energy for particle deformation. The developed THM model provides a comprehensive understanding of fracture propagation mechanisms.
Fracture propagation in rocks is a complex thermal-hydro-mechanical (THM) phenomenon present in geotechnics, such as enhanced geothermal systems, CO2 sequestration, and shale gas exploitation. Numerical simulation is an essential way to study its mechanism. In this study, a pore-scale model combined with the lattice Boltzmann method (LBM) and the discrete element method (DEM) is developed, in which the comprehensive THM coupling phenomena are considered, consisting of convective heat transport, conjugate heat transfer, hydrodynamic force, and thermal strain. In addition, to couple the temperature and anisotropic thermal expansion of rock in LBM-DEM, a novel method based on the deformation of sphero-triangle particle is presented, where the deformation is calculated using the principle of minimum potential energy. The main features of the proposed THM model are that it can accurately calculate the fluid flow in fractures and the temperature in both fractures and DEM particles, and it takes full consideration of multiple anisotropic properties in rock. After validations, the THM fracturing mechanism is preliminarily investigated using the proposed model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available