4.6 Article

A 2.2-ps Two-Dimensional Gated-Vernier Time-to-Digital Converter With Digital Calibration

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCSII.2016.2548218

Keywords

Gated ring oscillator (GRO); time-to-digital converter (TDC); two-dimensional (2-D); Vernier

Ask authors/readers for more resources

This brief presents a two-dimensional (2-D) Vernier time-to-digital converter (TDC) which uses two 3-stage gated ring oscillators (GROs) in the X/Y Vernier branches. The already small Vernier quantization noise (similar to 10.6 ps) is improved by the first-order noise shaping of the GRO. Moreover, since all the delay differences between the X and Y phases can be used (rather than only the diagonal line of the one-dimensional architecture), the intrinsic large latency time of the Vernier architecture is dramatically reduced. The TDC is implemented in a 65-nm CMOS process and consumes 2.3 mA from 1.0 V. The measured total noise integrated over a bandwidth of 1.25 MHz yields an equivalent TDC resolution of 2.2 ps, whereas the average latency time (within 2 ns) is less than 1/6 of that in a standard Vernier TDC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available