4.7 Article

DCACNet: Dual context aggregation and attention-guided cross deconvolution network for medical image segmentation

Journal

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2021.106566

Keywords

Attention mechanism; Cross deconvolution; Medical image segmentation; Convolutional neural network; Dual context aggregation

Funding

  1. National Natural Science Foundation of China [62162058, U2003208]
  2. Education Department of Xinjiang Uyghur Autonomous Region [XJ2020G072, XJ2020G073]
  3. Xinjiang Autonomous Region key research and development project [2021B01-002, 2020E0234]

Ask authors/readers for more resources

DCACNet is a reliable deep learning network framework that improves the segmentation performance of medical images by utilizing a multiscale cross-fusion encoding network, a dual context aggregation module, and an attention-guided cross deconvolution decoding network.
Background and Objective: Segmentation is a key step in biomedical image analysis tasks. Recently, convolutional neural networks (CNNs) have been increasingly applied in the field of medical image processing; however, standard models still have some drawbacks. Due to the significant loss of spatial information at the coding stage, it is often difficult to restore the details of low-level visual features using simple deconvolution, and the generated feature maps are sparse, which results in performance degradation. This prompted us to study whether it is possible to better preserve the deep feature information of the image in order to solve the sparsity problem of image segmentation models. Methods: In this study, we (1) build a reliable deep learning network framework, named DCACNet, to improve the segmentation performance for medical images; (2) propose a multiscale cross-fusion encoding network to extract features; (3) build a dual context aggregation module to fuse the context features at different scales and capture more fine-grained deep features; and (4) propose an attention-guided cross deconvolution decoding network to generate dense feature maps. We demonstrate the effectiveness of the proposed method on two publicly available datasets. Results: DCACNet was trained and tested on the prepared dataset, and the experimental results show that our proposed model has better segmentation performance than previous models. For 4-class classification (CHAOS dataset), the mean DSC coefficient reached 91.03%. For 2-class classification (Herlev dataset), the accuracy, precision, sensitivity, specificity, and Dice score reached 96.77%, 90.40%, 94.20%, 97.50%, and 97.69%, respectively. The experimental results show that DCACNet can improve the segmentation effect for medical images. Conclusion: DCACNet achieved promising results on the prepared dataset and improved segmentation performance. It can better retain the deep feature information of the image than other models and solve the sparsity problem of the medical image segmentation model. (C) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available