4.7 Article

Combining spectral and POD modes to improve error estimation of numerical model reduction for porous media

Journal

COMPUTATIONAL MECHANICS
Volume 69, Issue 3, Pages 767-786

Publisher

SPRINGER
DOI: 10.1007/s00466-021-02113-2

Keywords

Computational homogenization; Error control; Model reduction

Funding

  1. Chalmers University of Technology

Ask authors/readers for more resources

This paper further develops the previous work by proposing a combined basis constructed using both SD and POD modes with an adaptive mode selection strategy. The performance of the combined basis is compared to pure SD and pure POD bases through numerical examples, showing that the combined basis can yield a smaller error estimate.
Numerical model reduction (NMR) is used to solve the microscale problem that arises from computational homogenization of a model problem of porous media with displacement and pressure as unknown fields. The reduction technique and an associated error estimator for the NMR error have been presented in prior work, where both spectral decomposition (SD) and proper orthogonal decomposition (POD) were used to construct the reduced basis. It was shown that the POD basis performs better w.r.t. minimizing the residual, but the SD basis has some advantageous properties for the estimator. Since it is the estimated error that will govern the error control, the most efficient procedure is the one that results in the lowest error bound. The main contribution of this paper is further development of the previous work with a proposed combined basis constructed using both SD and POD modes together with an adaptive mode selection strategy. The performance of the combined basis is compared to (i) the pure SD basis and (ii) the pure POD basis via numerical examples. The examples show that it is possible to find a combination of SD/POD modes which is improved, i.e. it yields a smaller estimate, compared to the cases of pure SD or pure POD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available