4.6 Article

Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 63, Issue 5, Pages 904-913

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2015.2472533

Keywords

Neuromuscular model; powered prosthesis; prosthesis control; transfemoral prosthesis

Funding

  1. Eunice Kennedy Shriver National Institute of Child Health and Human Development [1R01HD075492]
  2. National Science Foundation Graduate Research Fellowship [0946825]

Ask authors/readers for more resources

Objective: Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here, we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods: We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a nonamputee user. Results: In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to midswing disturbances neither replicates human responses nor averts falls. Conclusions: The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance: This paper provides a potential avenue for future development of control policies that help to improve amputee balance recovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available