4.7 Article

Hydroxypropyl methacrylamide-based copolymeric nanoparticles loaded with moxifloxacin as a mucoadhesive, cornea-penetrating nanomedicine eye drop with enhanced therapeutic benefits in bacterial keratitis

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 208, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2021.112113

Keywords

bacterial keratitis; polymeric nanoparticles; moxifloxacin; MPEG-bHPMA; mucoadhesive

Funding

  1. Department of Science and Technology-Science and Engineering Research Board (DST-SERB), Government of India [EMR/2016/001514]
  2. Indian Council of Medical Research (ICMR)
  3. DST

Ask authors/readers for more resources

In this study, Mox-loaded copolymeric nanoparticles were prepared for the treatment of bacterial keratitis, showing excellent drug loading, mucoadhesion, and antimicrobial activity. The results demonstrate the safety and effectiveness of the drug solution in treating bacterial keratitis.
Bacterial keratitis (BK) is a leading cause of visual impairment. The fluoroquinolone antibiotic moxifloxacin (Mox), being highly water-soluble, suffers from poor corneal penetration leading to unsatisfactory therapeutic outcomes in BK. Here, we prepared Mox-loaded co-polymeric nanoparticles (NPs) by entrapping the drug in copolymeric NPs constituted by the self-assembly of a water-soluble copolymer, poly(ethylene glycol)-b-p (hydroxypropyl) methacrylamide (mPH). The polymer (mPH) was prepared using a radical polymerization technique at different mPEG: HPMA ratios of 1:70/100/150. The polymer/nanoparticles were characterized by GPC, CAC, DLS, SEM, XRD, DSC, FTIR, % DL, % EE, and release studies. The ex vivo muco-adhesiveness and corneal permeation ability were judged using a texture analyzer and Franz Diffusion Cells. In vitro cellular uptake, cytotoxicity, and safety assessment were performed using HCE cells in monolayers, spheroids, and multilayers in transwells. The DOE-optimized colloidal solution of Mox-mPH NPs (1:150) displayed a particle size of -116 nm, superior drug loading (8.3%), entrapment (83.2%), robust mucoadhesion ex vivo, and ocular retention in vivo (-6 h) (judged by in vivo image analysis). The non-irritant formulation, Mox-mPH NPs (1:150) (proven by HET-CAM test) exhibited intense antimicrobial activity against P. aeruginosa, S. pneumoniae, and S. aureus in vitro analyzed by live-dead cells assay, zone of inhibition studies, and by determining the minimum inhibitory and bactericidal concentrations. The polymeric nanoparticles, mPH (1:150), decreased the opacity and the bacterial load compared to the other treatment groups. The studies warrant the safe and effective topical application of the Mox-mPH NPs solution in bacterial keratitis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available