4.7 Article

Disruption of the blood-brain barrier and its close environment following adult exposure to low doses of di(2-ethylhexyl)phthalate alone or in an environmental phthalate mixture in male mice

Journal

CHEMOSPHERE
Volume 282, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131013

Keywords

Blood-brain barrier; Endocrine disruptors; Phthalates

Funding

  1. Agence Nationale de la Recherche, France

Ask authors/readers for more resources

Exposure to low doses of DEHP or an environmental phthalate mixture was found to increase BBB permeability, affect glial activation and neuroinflammation in specific brain regions. This suggests that exposure to endocrine disruptors like phthalates may pose a risk to cerebrovascular function.
We have previously shown that adult male mice exposure to low doses of di(2-ethylhexyl)phthalate (DEHP) alters neural function and behaviour. Whether such exposure also affects the integrity and function of the bloodbrain barrier (BBB) remained to be explored. The impact of adult exposure to low doses of DEHP alone or in an environmental phthalate mixture on the BBB integrity and surrounding parenchyma was studied in male mice. Two-month-old C57BL/6J males were orally exposed for 6 weeks to DEHP alone (5, and 50 mu g/kg/day) or to DEHP (5 mu g/kg/day) in an environmental phthalate mixture. BBB permeability, glial activation and neuroinflammation were investigated in the hypothalamic medial preoptic area (mPOA) and hippocampus involved, respectively on the reproductive and cognitive functions. Exposure to DEHP alone or in a phthalate mixture increased BBB permeability and affected the endothelial accessory tight junction protein zona occludens-1 and caveolae protein Cav-1 in the mPOA and the hippocampal CA1 and CA3 areas. This was associated with an inflammatory profile including astrocyte activation accompanied by enhanced expression of inducible nitric oxide synthase in the mPOA, and a microglial activation in the mPOA and the hippocampal CA1 and CA3 areas. The protein levels of the inflammatory molecule cyclooxygenase-2 were increased in activated microglial cells of the exposed mPOA. None of the major effects induced by DEHP alone or in a mixture was detected in the hippocampal dendate gyrus. The data highlight that environmental exposure to endocrine disruptors such as phthalates, could represent a risk factor for the cerebrovascular function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available