4.7 Article

Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL-101 (Cr)

Journal

CHEMOSPHERE
Volume 281, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130869

Keywords

Mesoporous silica; Metal organic frameworks; Adsorbent modification; Rare earth element; Adsorption

Ask authors/readers for more resources

Due to the increasing application of rare earth elements in the green energy sector, they have become precious commodities in the international market. Modified SBA-15 and chromium-based MOFs show high adsorption capacities for Lu and Y, with the MOF demonstrating superior ion-exchange capabilities. The adsorbents display high structural stability, retaining over 90% of adsorption capacity after multiple cycles.
Due to increasing application in the green energy sector, rare earth elements (REEs) have become a precious commodity in the international market. The REEs, Yttrium (Y) and Lutetium (Lu) are used as catalysts in wide array of industries. SBA-15 modified with 1,4-phthaloyl diamido-propyltriethoxysilane (1,4-PA-APTES) ligands; and chromium based metal organic frameworks (MOF) modified with PMIDA (MIL-101-PMIDA) were prepared in this study as potential adsorbents for recovery of these elements. The adsorption capacities for Lu and Y on virgin SBA-15 were negligible. After modification of SBA-15, the Langmuir adsorption capacities for Lu and Y significantly increased to 17.0 and 17.9 mg/L, respectively. The Langmuir adsorption capacities of Lu and Y on PMIDA modified MIL-101 (MIL-101-PMIDA) were 63.4 and 25.3 mg/g, respectively. Higher adsorption capacities of the MOF are due to its higher surface area (1050 m(2)/g) and beneficial functional groups such as phosphonic group present on the adsorbent surface and it attributes to rapider REE adsorption on MIL-101-PMIDA than on1,4-PA-SBA. Lu adsorption capacity was 2.5 times higher than Y due to its superior ion-exchange capability with grafted phosphonic groups. Both adsorbents retained over 90% of adsorption capacity after 5 adsorption/desorption cycles which demonstrate the high structural stability of the materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available