4.7 Article

Characterization of enoxacin (ENO) during ClO2 disinfection in water distribution system: Kinetics, byproducts, toxicity evaluation and halogenated disinfection byproducts (DBPs) formation potential

Journal

CHEMOSPHERE
Volume 283, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131251

Keywords

Enoxacin; Chlorine dioxide oxidation; Water distribution system; Destruction mechanism; Toxicity

Funding

  1. Doctoral Research Fund of Shandong Jianzhu University [X20038Z0101]
  2. China Postdoctoral Science Foundation [2018M632465]
  3. Funds for International Cooperation and Exchange of the National Natural Science Foundation of China [51761145022]

Ask authors/readers for more resources

The study found that the destruction efficiency of ENO in the pilot-scale PE pipe was lower than in deionized water, and the reactions in deionized water followed a second-order kinetic model. pH had a significant effect on ENO destruction, with removal ratio increasing at higher pH levels. Increasing flow rate also elevated ENO removal efficiency, but impact of flow velocity on ENO destruction was limited.
Enoxacin (ENO) is widespread in water because it is commonly used as a human and veterinary antibiotic. However, little effort has been dedicated to revealing the transformation mechanisms of ENO destruction using ClO2, especially within a water distribution system (WDS). To address this knowledge gap, the kinetics, byproducts, toxicity, and formation potential of halogenated disinfection byproducts (DBPs) associated with ENO destruction using ClO2 in a pilot-scale PE pipe was explored for the first time. Statistical analyses showed that the destruction efficiency of ENO in the pilot-scale PE pipe was lower than that in deionized water (DI water), and the reactions in DI water followed the second-order kinetic model. Furthermore, pH has a significant effect on the destruction of ENO, and the removal ratio increased at a higher pH. Additionally, increasing the flow rate elevated the ENO removal efficiency; however, the influence of flow velocity was limited to ENO destruction. The ENO removal rates within the diverse pipes exhibited the following order: stainless steel pipe < PE pipe < ductile iron pipe. Nine possible intermediates were identified, and those that were formed by piperazine group cleavage represented the major primary byproducts of the entire destruction process. Additionally, the ENO destruction in a pilot-scale PE pipe had minimal influence on halogenated DBPs and chlorite formation. Finally, the toxicity evaluation illustrated that the presence of ENO increased the potential risk of water quality safety when treated with ClO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available