4.7 Article

Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants

Journal

CHEMOSPHERE
Volume 287, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132081

Keywords

Green synthesis; Doped ZnO nanoparticles; Morphology; Photocatalysis; Toxic organic pollutants; Environmental remediation

Ask authors/readers for more resources

The synthesis of metal nanoparticles using plant extracts has emerged as a significant issue in the field of nanoscience and nanobiotechnology, showing superior physical and optical properties. In this study, Cu-doped ZnO NPs exhibited enhanced photocatalytic activity for organic dyes, indicating the potential of bio-synthesis in developing environmentally friendly products with enriched photocatalytic performance.
In recent times, the synthesis of metal nanoparticles (NPs) using plant extracts has recently emerged as an intriguing issue in the field of nanoscience and nanobiotechnology, with numerous advantages over conventional physicochemical approaches. In the current study, ZnO NPs were synthesized from Synadium grantii leaf extricate with varying Cu-dopant concentrations. In order to the synthesis of the pure and Cu-doped ZnO NPs, zinc nitrate hexahydrate and copper nitrate trihydrate were used as a precursor in leaf extracts of the plant. XRD, TEM, FTIR, XPS, and PL measurements were carried out to examine the physical and optical properties of the synthesized samples. The photocatalytic studies of the prepared samples were studied using Methylene blue (MB), Indigo Carmine (IC), and Rhodamine B (RhB) organic pollutants. The wurtzite crystal structure of synthesized samples was confirmed by XRD and TEM analysis. Further, the presence of functional groups in the prepared samples was confirmed by FTIR analysis. XPS analysis confirmed that the binding energies of a host material and dopant ions. The emission peaks identified at 424, 446 and 573 nm are associated with the electron movement from the deep donor level, zinc interstitial to the zinc vacancy and oxygen vacancy. 3% and 5% Cudoped samples exhibited superior photocatalytic activity for MB, IC, and RhB dyes. The green synthesized ZnO NPs showed enriched photocatalytic performance, signifying that bio-synthesis can be an outstanding approach to develop versatile and environmental products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available