4.7 Article

Optimization of fluoride removal by Al doped ZnO nanoparticles using response surface methodology from groundwater

Journal

CHEMOSPHERE
Volume 284, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131317

Keywords

Al doped ZnO adsorbent; Fluoride removal; Response surface methodology (RSM); Central composite design (CCD); Analysis of variance (ANOVA)

Ask authors/readers for more resources

The study optimized the process parameters for fluoride removal using Al doped ZnO nanoparticles through response surface methodology, showing significant potential for effective defluoridation in water.
The current novel work presents the optimization of factors affecting defluoridation by Al doped ZnO nanoparticles using response surface methodology (RSM). Al doped ZnO nanoparticles were synthesized by the sol-gel method and validated by FTIR, XRD, TEM/EDS, TGA, BET, and particle size analysis. Moreover, a central composite design (CCD) was developed for the experimental study to know the interaction between Al doped ZnO adsorbent dosage, initial concentration of fluoride, and contact time on fluoride removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was achieved to discover the importance of the individual and the effect of variables on the response. The model predicted that the response significantly correlated with the experimental response (R-2 = 0.97). Among the factors, the effect of adsorbent dose and contact time was considered to have more influence on the response than the concentration. The optimized process parameters by RSM presented the adsorbent dosage: 0.005 g, initial concentration of fluoride: 1.5 g/L, and contact time: 5 min, respectively. Kinetic, isotherm, and thermodynamic studies were also investigated. The co-existing ions were also studied. These results demonstrated that Al doped ZnO could be a promising adsorbent for effective defluoridation for water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available