4.7 Article

Quantitative proteome analysis reveals changes of membrane transport proteins in Sedum plumbizincicola under cadmium stress

Journal

CHEMOSPHERE
Volume 287, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132302

Keywords

Integrative membrane protein; Cadmium tolerance and accumulation; Sedum plumbizincicola; TMT labeling Based quantification proteome; Transporter

Funding

  1. National Nonprofit Institute Research Grant of CAF [CAFYBB2020SY016]
  2. National Transformation Science and Technology Program [2018ZX08020002005003]
  3. National Natural Science Foundation of China [31200465, 31872168]
  4. State Key Laboratory for Managing Biotic and Chemical Threats [2010DS700124-ZZ2013, 2010DS700124-KF1910]

Ask authors/readers for more resources

Sedum plumbizincicola is a herbaceous species capable of accumulating excessive cadmium, especially with up-regulation of transport proteins, in response to Cd exposure. The study identified and quantified Cd-responsive membrane proteins in root, stem, and leaf tissues, showing significant changes in transport proteins such as ABC transporters and aquaporins after Cd treatment. The results provide insights into the molecular mechanisms of Cd hyper-tolerance and hyper-accumulation in S. plumbizincicola for potential applications in genetic engineering for phytoremediation purposes.
Sedum plumbizincicola is an herbaceous species tolerant of excessive cadmium accumulation in above-ground tissues. The implications of membrane proteins, especially integrative membrane proteins, in Cd detoxification of plants have received attention in recent years, but a comprehensive profiling of Cd-responsive membrane proteins from Cd hyperaccumulator plants is lacking. In this study, the membrane proteins of root, stem, and leaf tissues of S. plumbizincicola seedlings treated with Cd solution for 0, 1 or 4 days were analyzed by Tandem Mass Tag (TMT) labeling-based proteome quantification (Data are available via ProteomeXchange with identifier PXD025302). Total 3353 proteins with predicted transmembrane helices were identified and quantified in at least one tissue group. 1667 proteins were defined as DAPs (differentially abundant proteins) using fold change >1.5 with p-values <0.05. The number of DAPs involved in metabolism, transport protein, and signal transduction was significantly increased after exposure to Cd, suggesting that the synthesis and decomposition of organic compounds and the transport of ions were actively involved in the Cd tolerance process. The number of up-regulated transport proteins increased significantly from 1-day exposure to 4-day exposure, from 5 to 112, 16 to 42, 18 to 44, in root, stem, and leaf, respectively. Total 352 Cd-regulated transport proteins were identified, including ABC transporters, ion transport proteins, aquaporins, proton pumps, and organic transport proteins. Heterologous expression of SpABCB28, SpMTP5, SpNRAMP5, and SpHMA2 in yeast and subcellular localization showed the Cd-specific transport activity. The results will enhance our understanding of the molecular mecha-nism of Cd hypertolerance and hyperaccumulation in S. plumbizincicola and will be benefit for future genetic engineering in phytoremediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available