4.7 Review

A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach

Journal

CHEMOSPHERE
Volume 287, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132230

Keywords

Printed circuit boards; Heavy metals; Metal recovery; Chemical leaching; Bioleaching; Biometallurgical

Ask authors/readers for more resources

This review discusses the environmental pollution caused by printed circuit boards and the methods for recovering valuable and hazardous metals from e-wastes. It highlights the use of chemical, biological, and physical approaches for metal recovery, emphasizing the need for advanced recycling methods to address pollution challenges posed by PCBs.
This review is intent on the environmental pollution generated from printed circuit boards and the methods employed to retrieve valuable and hazardous metals present in the e-wastes. Printed circuit boards are the key components in the electronic devices and considered as huge e-pollutants in polluting our surroundings and the environment as a whole. Composing of toxic heavy metals, it causes serious health effects to the plants, animals and humans in the environment. A number of chemical, biological and physical approaches were carried out to recover the precious metals and to remove the hazardous metals from the environment. Chemical leaching is one of the conventional PCBs recycling methods which was carried out by using different organic solvents and chemicals. Need of high cost for execution, generation of secondary wastes in the conventional methods, forces to discover the advanced recycling methods such as hydrometallurgical, bio-metallurgical and bioleaching processes to retrieve the valuable metals generate through e-wastes. Among them, bioleaching process gain extra priority due to its higher efficiency of metal recovery from printed circuit boards. There are different classes of microorganisms have been utilized for precious metal recovery from the PCBs through bioleaching process such as chemolithoautotrophy, heterotrophy and different fungal species including Aspergillus sp. and Penicillium sp. The current status and scope for further studies in printed circuit boards recycling are discussed in this review.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available