4.7 Article

Impact of hydrogen sulfide on biochar in stimulating the methane oxidation capacity and microbial communities of landfill cover soil

Journal

CHEMOSPHERE
Volume 286, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131650

Keywords

Methane; Hydrogen sulfide; Landfill cover soil; Biochar; Methanotroph

Funding

  1. National Key R&D Program of China [2018YFC1902903]

Ask authors/readers for more resources

The impact of H2S on the methane oxidation capacity and microbial communities in landfill cover soil (LCS) is influenced by H2S concentration and gas conditions. Addition of biochar (BC) can enhance methane oxidation capacity and exhibit excellent H2S adsorption ability.
Hydrogen sulfide (H2S) can influence methanotrophic activities and be adsorbed by biochar (BC); however, the impact of H2S on BC in stimulating the methane (CH4) oxidation capacity of landfill cover soil (LCS) has not been clarified. Thus, batch incubation experiments were conducted to observe the effect of H2S on the CH4 oxidation capacity of and microbial communities in BC-amended LCS. Three landfill gas conditions were considered: 5 % CH4 and 15 % oxygen (O2) (5 M), 10 % CH4 and 10 % O2, and 20 % CH4 and 5 % O2 (20 M) by volume, with H2S concentrations of 0, 100, 250, and 1000 ppm, respectively. Another series was conducted using LCS subjected to pre-H2S saturation under the 20 M gas condition. In the 5 M gas condition suitable for the dominant methanotroph Methylocaldum (type I), the BC retained its ability to stimulate the CH4 oxidation capacity of LCS (enhancement of 41-108 %) in the presence of H2S. Additionally, when H2S < 250 ppm, the BC exhibited a relatively consistent impact of H2S on both CH4 oxidation capacity and microbial communities in LCS, independent of the CH4 or O2 concentrations. This result could be attributed to the different pathways of H2S metabolism for the LCS and BC-amended LCS. Furthermore, when saturated adsorption of H2S occurred for the LCS, the CH4 oxidation capacity for BC-amended LCS was higher than that for non-amended LCS, which demonstrated the ability of BC in alleviating the inhibition of H2S on CH4 oxidation due to its excellent H2S adsorption under even anoxic environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available