4.8 Review

Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation

Journal

CHEMICAL REVIEWS
Volume 122, Issue 1, Pages 167-208

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.1c00632

Keywords

-

Funding

  1. Australian Research Council [CE140100036]
  2. National Health and Medical Research Council [APP1157440]
  3. National Natural Science Foundation of China [51803112]
  4. China Postdoctor a l Science Foundation [2018M633503]
  5. U.S. Army Research Office [W911NF19-2-0026]

Ask authors/readers for more resources

This review discusses the applications of fluorinated molecules in bioengineering and nanotechnology, with a focus on controlling fluorine-fluorine interactions and understanding their impact on biological behavior. The controlled introduction of fluorine and its interactions can provide advantages in imaging, therapeutics, and environmental applications.
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with F-19 magnetic resonance imaging, F-18 positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available