4.6 Article

RetroSynX: A retrosynthetic analysis framework using hybrid reaction templates and group contribution-based thermodynamic models

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 248, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2021.117208

Keywords

Retrosynthesis pathway design; Reaction template; Reaction equilibrium constant; Group contribution method; Breadth-First Search algorithm

Funding

  1. National Natural Science Foundation of China [22078041, 21808025]
  2. Fundamental Research Funds for the Central Universities [DUT20JC41]

Ask authors/readers for more resources

Organic synthesis is crucial in the pharmaceutical industry, and designing drug synthesis routes is a critical decision step. This article proposes a retrosynthetic analysis framework based on hybrid reaction templates and thermodynamic models, and develops a tool called RetroSynX to assist in the design of synthesis routes.
Organic synthesis plays an essential role in the pharmaceutical industry. The drug synthesis route design is a critical decision step to convert raw materials to drug products. Traditionally, knowledge-based methods are commonly used for the design of the synthesis route. However, this type of method is expensive and time-consuming, which hinders the high-throughput design of the synthesis route. In this article, a retrosynthetic analysis framework is established based on hybird reaction templates and Group Contribution (GC)-based thermodynamic models. First, a hybrid database consisting of partial atom mapping and full atom-mapping reaction templates is constructed utilizing well-studied organic reactions from literature. Second, numerous virtual reactions are generated from reaction templates with respect to the target molecule, and reaction thermodynamic models based on the GC method are developed to validate the effectiveness of those virtual reactions in a timely fashion. Finally, Breadth-First Search (BFS) algorithm is employed to search candidate retrosynthesis pathways which are thermodynamically feasible. In this procedure, five evaluation criteria are used to identify the top-ranked retrosynthesis pathways through evaluating and optimizing the candidate retrosynthesis pathways, including Fathead Minnow 96-hr LC50 (LC50FM), flash point (Fp), Natural Product-likeness Score (NPScore), Synthesis Accessibility Score (SAScore), and Synthesis Complexity Score (SCScore). A retrosynthetic analysis tool called RetroSynX is developed using the proposed framework. With the help of the developed framework and tool, synthesis routes considering thermodynamic feasibility can be obtained. Three case studies involving Aspirin, Ibuprofen and ZatoSetron are presented to highlight the feasibility and reliability of the proposed framework. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available