4.6 Article

Real-time monitoring and insights into process control of micron-sized calcium carbonate crystallization by an in-line digital microscope camera

Journal

CHEMICAL ENGINEERING RESEARCH & DESIGN
Volume 177, Issue -, Pages 778-788

Publisher

ELSEVIER
DOI: 10.1016/j.cherd.2021.12.001

Keywords

Crystallization; Calcium carbonate precipitation; Real-time monitoring; Crystallization control; Micron particle; CO2 utilization

Funding

  1. European Unions Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant [764902]

Ask authors/readers for more resources

In this study, a crystallization monitoring unit is used for real-time monitoring and control of micron-sized liquid-liquid crystallization of calcium carbonate. It is integrated with a membrane contactor-based carbon dioxide capture process to demonstrate a sustainable CO2-to-chemical unit operation. The effects of various operating conditions on crystal size and particle count are investigated, and a set-point tracking PI controller is implemented based on real-time image analysis.
In the present study, a crystallization monitoring unit consisting of an in-situ digital microscope camera and real-time image analysis is utilized for monitoring and control of a micron-sized, liquid-liquid crystallization of calcium carbonate. The crystallization process is integrated with a membrane contactor-based carbon dioxide capture process to demonstrate a sustainable CO2-to-chemical unit operation. The measurement probe transilluminates the crystal suspension and provides a live view from the crystallizer. In a series of open-loop experiments, the effects of several operating conditions such as feed flow rate and volumetric power on crystal size and particle count are investigated. For comparison purposes, solid product crystals are assessed with an offline laser diffraction technique. In the closed-loop experiments, the controlled variable is average particle diameter, and the manipulated variable is mixing intensity. The implemented set-point tracking PI controller generates actuating signals based on real-time image analysis measurement of the crystal size. Experimental results demonstrate a practical approach for measuring micron-sized particle suspensions, which is a challenge for particles with a mean diameter smaller than 15-20 mu m, provides insights into the mixing intensity-based particle size controllability in fast-reaction precipitation systems and offers a framework to implement a direct design feedback control policy. (c) 2021 The Author(s). Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available