4.7 Article

Arbitrary Power-Conserving Field Transformations With Passive Lossless Omega-Type Bianisotropic Metasurfaces

Journal

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
Volume 64, Issue 9, Pages 3880-3895

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2016.2588495

Keywords

Bianisotropy; field transformations; high-gain antennas; metasurfaces; refraction; wavefront manipulation

Funding

  1. Lyon Sachs Postdoctoral Fellowship Foundation
  2. Andrew and Erna Finci Viterbi Postdoctoral Fellowship Foundation of the Technion - Israel Institute of Technology, Haifa, Israel

Ask authors/readers for more resources

We present a general theory for designing realistic omega-type bianisotropic metasurfaces (O-BMSs), unlocking their full potential for molding electromagnetic fields. These metasurfaces, characterized by electric surface impedance, magnetic surface admittance, and magnetoelectric coupling coefficient, were previously considered for wavefront manipulation. However, previous reports mainly considered plane-wave excitations, and implementations included cumbersome metallic features. In this paper, we prove that any field transformation that locally conserves real power can be implemented via passive and lossless meta-atoms characterized by closed-form expressions; this allows rigorous incorporation of arbitrary source and scattering configurations. Subsequently, we show that O-BMS meta-atoms can be implemented using an asymmetric stack of three impedance sheets, an appealing structure for printed circuit board fabrication. Our formulation reveals that, as opposed to Huygens' metasurfaces, which exhibit negligible magnetoelectric coupling, O-BMSs are not limited to controlling the phase of transmitted fields, but can rather achieve a high level of control over the amplitude and phase of reflected fields. This is demonstrated by designing O-BMSs for reflectionless wide-angle refraction, independent surface-wave guiding, and a highly directive low-profile antenna, verified with full-wave simulations. This straightforward methodology facilitates the development of O-BMS-based devices for controlling the near and far fields of arbitrary sources in complex scattering configurations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available