4.7 Article

α-MnS@Co3S4 hollow nanospheres assembled from nanosheets for hybrid supercapacitors

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 422, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.129953

Keywords

Mixed metal sulfides; Hollow spheres; Hybrid supercapacitor; alpha-MnS@Co3S4

Funding

  1. Research councils of Shahid Beheshti University

Ask authors/readers for more resources

This paper synthesized NSH-MCS positive electrode with special morphology and demonstrated its excellent performance in hybrid supercapacitors, including high specific capacity, good rate performance, and significant cycling stability.
Nanostructured mixed metal sulfides (MMSs) have emerged as a prominent kind of material for use in the fields of energy storage thanks to their intrinsic safety and good theoretical specific capacity. In this paper, nanosheet assembled hollow alpha-MnS@Co3S4 spheres (NSH-MCS) with special morphology are synthesized and evaluated as an effective positive electrode for the hybrid supercapacitors. The synthesis process starts with the growth of the Co-based zeolitic imidazolate framework (ZIF-67) nanosheets onto manganese-glycerate (Mn-G) solid spheres. The direct sulfidation of the Mn-G@ZIF-67 nanostructures leads to the formation of NSH-MCS. The special structure can provide rich mass/electron transfer channels, meanwhile prevent the accumulation of nanosheets. Taking advantage of these great merits, the NSH-MCS based electrode discloses appealing electrochemical features including an impressive capacity value of 283.3 mAh/g (1019.9C/g) at 1 A/g with desired rate performance of 81.5% at 25 A/g and significant longevity of 92.7% over 10,000 cycles at 15 A/g. Also, a hybrid supercapacitor assembled with NSH-MCS positive electrode and AC (activated carbon) negative electrode proves desirable performance, such as a good energy density (54.9 Wh/kg at 753 W/kg) and excellent longevity of 90.5% after 10,000 cycles at 15 A/g. The straightforward strategy introduced in this paper can open an effective avenue for the fabrication of various MMSs for other applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available