4.7 Article

Hybrid nonlinear resonance in Hamiltonian systems

Journal

CHAOS
Volume 32, Issue 1, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0072971

Keywords

-

Ask authors/readers for more resources

The electronic system in an atom is considered Hamiltonian only at times shorter than the spontaneous relaxation time. However, a phenomenon of nonlinear hybrid resonance can be observed in the electronic spectrum when the external electromagnetic field has a specific form.
An electronic system in an atom can be considered Hamiltonian only at times shorter than the spontaneous relaxation time. However, this time is sufficient for resonant action on the electronic system and for the implementation of the resonance inherent in Hamiltonian systems. In practice, there may be a case when it is expedient to use a hybrid approach to study nonlinear resonance, in which the classical theory can be used to calculate the action-dependent nonlinear resonance frequency, and the quantum theory can be used to calculate its correction. The use of such a hybrid approach becomes necessary when the resonant value of the action does not exceed Planck's constant many times. It is shown in the work that if the external electromagnetic field has the form of a periodic series of light pulses with a high duty cycle, then the phenomenon of nonlinear hybrid resonance leads to the appearance of a line in the low-frequency region of the electronic spectrum. The broadening of this line is determined using the rms quantum fluctuations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available