4.7 Article

Error Analysis of Analytical Coarse Alignment Formulations for Stationary SINS

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAES.2016.7738355

Keywords

-

Funding

  1. Brazilian Funding Authority for Studies and Projects (FINEP) [01.06.1177]

Ask authors/readers for more resources

This paper presents a comprehensive error analysis of coarse alignment formulations for stationary strapdown inertial navigation systems (SINS). Analytical expressions for the residual normality, orthogonality, alignment, and Euler angle errors are systematically derived, allowing us to establish comparisons in terms of rapidity, accuracy, and autonomy requirements. For the purpose of the error analysis, geographic latitude and local gravity acceleration uncertainties are considered, in addition to the inertial sensor uncertainties. As the main contribution of this paper, an improved coarse alignment method is proposed, which is based on orthonormality constraints existing between the Euler angles and the attitude matrix. In contrast to the traditional methods, the proposed formulation does not imply normality and orthogonality errors, besides producing time-independent alignment and Euler angle errors. The latter is seen to be particularly interesting for situations wherein, due to time constraints, posterior fine alignment and orthonormalization procedures cannot be implemented. The superiority of the proposed formulation is validated through simulated and experimental tests, regardless of the SINS initial orientation. The accuracy degradation produced by each alignment formulation in the navigation stage is used as the performance index.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available