4.6 Article

Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis

Journal

CELL BIOLOGY AND TOXICOLOGY
Volume 39, Issue 2, Pages 467-481

Publisher

SPRINGER
DOI: 10.1007/s10565-021-09684-z

Keywords

Hepatitis B virus; Exosome; miR-222; Liver fibrosis; Transferrin receptor; Ferroptosis; Lipid ROS; Hepatic stellate cell; Hepatocytes; Fe2+

Ask authors/readers for more resources

Exosomal miR-222 promotes liver fibrosis by inhibiting TFRC and TFRC-induced ferroptosis in HBV-infected hepatocytes. This study reveals the significance of miR-222 and TFRC in the process of liver fibrosis.
Exosomal miRNAs activates hepatic stellate cell (HSC) and promote fibrosis. miR-222 was found to be increased in hepatitis B virus (HBV)-infected hepatocytes, and ferroptosis was reported to ameliorate liver fibrosis (LF). Although miR-222 and ferroptosis have been implicated in LF, the association between miR-222 and ferroptosis and how they coordinate to regulate LF are still not explicit. This study investigates the roles of miR-222 and transferrin receptor (TFRC) in LF. Lipid reactive oxygen species (ROS) level was analyzed by flow cytometry. FerroOrange staining was used to measure intracellular iron level. Luciferase reporter assay was adopted to confirm the binding of miR-222 and TFRC. Real-time quantitative PCR and immunoblots were applied to analyze gene and protein expression. The results showed that supplementation of exosomes derived from HBV-infected LO2 cells remarkably enhanced LX-2 cell activation, evidenced by elevated hydroxyprolin (Hyp) secretion and alpha-SMA and COL1A2 expression. miR-222 was significantly increased in HBV-Exo. Overexpressing miR-222 upregulated cell viability, secretion of Hpy, and expression of alpha-SMA and COL1A2, which were all blocked by overexpression of TFRC. Further study showed that TFRC was a target of miR-222, and miR-222 promoted LX-2 cell activation through suppressing TFRC-induced ferroptosis in LX-2 cells. Exosomal miR-222 derived from HBV-infected hepatocytes promoted LF through inhibiting TFRC and TFRC-induced ferroptosis. This study emphasizes the significance of miR-222/TFRC axis in LF and suggests new insights in clinical decision making while treating LF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available