4.8 Article

A hierarchical carbon Fiber@MXene@ZnO core-sheath synergistic microstructure for efficient microwave absorption and photothermal conversion

Journal

CARBON
Volume 183, Issue -, Pages 872-883

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2021.07.072

Keywords

MXene; Hierarchical structures; Microwave absorption; Photothermal conversion

Ask authors/readers for more resources

The continuous 3D hierarchical construction method has been proven to be an effective way to prepare high-efficiency microwave absorption composites. A novel hierarchical carbon fiber @MXene@ZnO core-sheath structure with tunable and efficient microwave absorption performance has been successfully synthesized through a self-assembly and hydrothermal process. The composite material exhibits excellent microwave absorption and photothermal properties, providing a new strategy for designing safe and wearable devices.
Continuous 3D hierarchical construction has been proved to serve as a feasible method to prepare high-efficiency microwave absorption (MA) composites. Herein, an innovative hierarchical carbon fiber (CF) @MXene@ZnO core-sheath synergistic structure with tunable and efficient MA performance has been synthesized via a self-assembly (MXene) and hydrothermal (ZnO) process. Because of increased conductivity loss of the interlayer MXene sheath due to synergistic effects and the enhanced impedance matching of the outer ZnO layer, the optimal reflection loss (RL) value of CMZ2 is -67.35 GHz at 9.0 GHz at a thickness of 3.5 mm and the optimal effective absorption bandwidth (EAB) is 5.44 GHz, covering the full X band at a thickness of 4.0 mm. Furthermore, the CMZ microrods can be used as energy transformers and molecular heaters due to the synergistic effects of the high photothermal conversion efficiency of MXene, high photocatalytic activity of ZnO, and high thermal conductivity of CF. When used as wearable CMZ/polyurethane (PU) composite coatings, the surface temperature increases rapidly with a healing efficiency of above 91% for mechanical damage. These results provide a new strategy to fabricate wearable materials with effective MA and photothermal properties for designing safe and wearable devices. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available