4.7 Article

Influencing factors in the simulation of airflow and particle transportation in aircraft cabins by CFD

Journal

BUILDING AND ENVIRONMENT
Volume 207, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2021.108413

Keywords

CFD; Particle transport; Mixing ventilation; Displacement ventilation; Airliner cabin; Validation

Ask authors/readers for more resources

Effective ventilation systems are essential for controlling the transport of particles like the SARS-CoV-2 virus in airliner cabins. Validated computational fluid dynamics (CFD) models are frequently used to investigate air distribution and contaminant transportation. This study evaluated the effects of different ventilation systems, turbulence models, and particle simulation methods on airflow and particulate distributions in airliner cabins. The results show that accuracy and cost-effectiveness can be achieved by carefully selecting validation processes and simulation methods.
To control the transport of particles such as the SARS-CoV-2 virus in airliner cabins, which is a significant concern for the flying public, effective ventilation systems are essential. Validated computational fluid dynamics (CFD) models are frequently and effectively used to investigate air distribution and contaminant transportation. The complex geometry and airflow characteristics in airliner cabins pose a challenge to numerical CFD validation. The objective of this investigation was to identify accurate and affordable validation processes for studying the airflow field and particulate contaminant distribution in airliner cabins during the design process for different ventilation systems. This study quantitatively evaluated the effects of ventilation system, turbulence model, particle simulation method, geometry simplification, and boundary condition assignment on airflow and particulate distributions in airliner cabins with either a mixing ventilation (MV) system or a displacement ventilation (DV) system calculated by CFD. The results showed that among four turbulence models, the standard k-epsilon, RNG k-epsilon, realizable k-epsilon and SST k-omega models, the prediction by the realizable k-epsilon model agreed most closely with the experimental data. Meanwhile, the steady Eulerian method provided a reasonable prediction of the particle concentration field with low computing cost. The computational domain should be simplified differently for the DV system and the MV system with consideration of the simulation accuracy and computing cost. For more accurate modeling results, the boundary conditions should be assigned in greater detail, taking into account the uniformity on the boundary.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available