4.1 Article

PREDICTION OF RESIDUAL RESISTANCE OF A TRIMARAN VESSEL BY USING AN ARTIFICIAL NEURAL NETWORK

Journal

BRODOGRADNJA
Volume 73, Issue 1, Pages 127-140

Publisher

UNIV ZAGREB FAC MECHANICAL ENGINEERING & NAVAL ARCHITECTURE
DOI: 10.21278/brod73107

Keywords

trimaran; residual resistance; side hull; artificial neural network

Ask authors/readers for more resources

This study used an artificial neural network model to predict the resistance of a trimaran model, and developed a reliable model. The experimental data showed that the prediction using the neural network model achieved a high level of accuracy.
Trimaran hull forms have been popular recently in both commercial and military usage due to reduction in resistance at high speeds, better stability, and greater deck area compared to conventional monohull vessels. Determination of the location of the side hulls is most critical to get higher hydrodynamic performance. Therefore, many studies in the literature are related to defining the location of the side hulls for trimaran vessels. Most of the studies have been carried out experimentally or numerically. In this study, an artificial neural network (ANN) model was used to predict the residual resistance coefficient of a trimaran model. The model uses four parameters which are the transverse and longitudinal positions of the side hulls, the longitudinal centre of buoyancy and the Froude number to predict the residual resistance of the trimaran model. The experimental data of the trimaran model were used to train the neural network model in order to develop a more reliable model. Several neural network models were developed and tested to find the one with minimum error. The study showed that the residual resistance coefficients of the trimaran model were predicted with high accuracy levels compared to the model experimental data. It was also shown that an ANN is a useful alternative method to model tests and numerical simulations. The developed model can be used to reduce the number of model tests or numerical simulations as well as to obtain the optimum location of the side hulls in terms of resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available