4.7 Article

Efficient Wireless Power Transfer in Software-Defined Wireless Sensor Networks

Journal

IEEE SENSORS JOURNAL
Volume 16, Issue 20, Pages 7409-7420

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2016.2588282

Keywords

Optimal node placement; optimization; RF energy harvesting; wireless sensor networks

Ask authors/readers for more resources

The ever-growing increase in modern and ubiquitous applications of wireless sensor networks (WSNs) is causing energy scarcity, which is a serious threat to the lifetime of the network. Wireless power transfer emerges as a promising solution to replenish the sensor nodes. In wireless power transfer, energy is transferred to sensor nodes through dedicated energy transmitters. In addition, software-defined WSNs (SDWSNs) have been recently realized to fully explore and efficiently utilize the resources of WSNs. In this paper, we present an energy efficient SDWSN with wireless power transfer. We propose a mechanism to place energy transmitters and determine minimum number of energy transmitters. For placement of energy transmitters, a tradeoff between maximum energy charged in the network and fair distribution of energy is studied. We present this mechanism by defining a utility function to maximize both total energy charged and fairness. For minimum number of energy transmitters, an optimization problem is formulated and solved while satisfying the constraint on minimum energy charged by each sensor node. We also propose an energy-efficient scheduling scheme for energy transmitters for the given tasks of energy charging. The focus is to minimize the energy consumption of energy transmitters while keeping sensor nodes sufficiently charged. Finally, this paper is supported by extensive simulation results, which illustrate the performance of energy-efficient SDWSNs with wireless power transfer in terms of energy charged, fairness, number of energy transmitters, number of tasks, and energy consumption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available