4.6 Article

House fly larval grazing alters dairy cattle manure microbial communities

Journal

BMC MICROBIOLOGY
Volume 21, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12866-021-02418-5

Keywords

House fly larvae; Grazing; Manure; Bacteria; Archaea; Protist; Microbial community; Diversity

Categories

Funding

  1. USDA-ARS National Program 104 [3020-32000-007-00D]

Ask authors/readers for more resources

House fly larval grazing significantly altered the abundance and diversity of bacterial, archaeal, and protist communities differently than manure aging alone. Larvae likely adjust community composition by directly feeding on and eliminating microbes, as well as by competing with predatory microbes for nutrients and prey. Overall, larval grazing reduced bacterial and archaeal diversities but increased protist diversity.
Background House fly larvae (Musca domestica L.) require a live microbial community to successfully develop. Cattle manure is rich in organic matter and microorganisms, comprising a suitable substrate for larvae who feed on both the decomposing manure and the prokaryotic and eukaryotic microbes therein. Microbial communities change as manure ages, and when fly larvae are present changes attributable to larval grazing also occur. Here, we used high throughput sequencing of 16S and 18S rRNA genes to characterize microbial communities in dairy cattle manure and evaluated the changes in those communities over time by comparing the communities in fresh manure to aged manure with or without house fly larvae. Results Bacteria, archaea and protist community compositions significantly differed across manure types (e.g. fresh, aged, larval-grazed). Irrespective of manure type, microbial communities were dominated by the following phyla: Euryarchaeota (Archaea); Proteobacteria, Firmicutes and Bacteroidetes (Bacteria); Ciliophora, Metamonanda, Ochrophyta, Apicomplexa, Discoba, Lobosa and Cercozoa (Protists). Larval grazing significantly reduced the abundances of Bacteroidetes, Ciliophora, Cercozoa and increased the abundances of Apicomplexa and Discoba. Manure aging alone significantly altered the abundance bacteria (Acinetobacter, Clostridium, Petrimonas, Succinovibro), protists (Buxtonella, Enteromonas) and archaea (Methanosphaera and Methanomassiliicoccus). Larval grazing also altered the abundance of several bacterial genera (Pseudomonas, Bacteroides, Flavobacterium, Taibaiella, Sphingopyxis, Sphingobacterium), protists (Oxytricha, Cercomonas, Colpodella, Parabodo) and archaea (Methanobrevibacter and Methanocorpusculum). Overall, larval grazing significantly reduced bacterial and archaeal diversities but increased protist diversity. Moreover, total carbon (TC) and nitrogen (TN) decreased in larval grazed manure, and both TC and TN were highly correlated with several of bacterial, archaeal and protist communities. Conclusions House fly larval grazing altered the abundance and diversity of bacterial, archaeal and protist communities differently than manure aging alone. Fly larvae likely alter community composition by directly feeding on and eliminating microbes and by competing with predatory microbes for available nutrients and microbial prey. Our results lend insight into the role house fly larvae play in shaping manure microbial communities and help identify microbes that house fly larvae utilize as food sources in manure. Information extrapolated from this study can be used to develop manure management strategies to interfere with house fly development and reduce house fly populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available