4.8 Article

Chemical oxygen demand and nitrogen transformation in a large pilot-scale plant with a combined submerged anaerobic membrane bioreactor and one-stage partial nitritation-anammox for treating mainstream wastewater at 25 °C

Journal

BIORESOURCE TECHNOLOGY
Volume 341, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2021.125840

Keywords

Anaerobic membrane bioreactor; Partial nitritation-anammox; Municipal wastewater treatment; Energy saving; Pilot-scale plant

Funding

  1. Ministry of the Environment, Japan
  2. Low Carbon Technology Research and Development Program

Ask authors/readers for more resources

A novel municipal wastewater treatment process was developed by combining SAnMBR with PN/A, achieving energy neutrality and reduced carbon emissions. High removal efficiencies of COD and TN were demonstrated at pilot-scale, showing the potential for treating real municipal wastewater.
A novel municipal wastewater treatment process towards energy neutrality and reduced carbon emissions was established by combining a submerged anaerobic membrane bioreactor (SAnMBR) with a one-stage partial nitritation-anammox (PN/A), and was demonstrated at pilot-scale at 25 degrees C. The overall COD and BOD5 removal efficiencies were 95.1% and 96.4%, respectively, with 20.3 mg L-1 COD and 5.2 mg L-1 BOD5 remaining in the final effluent. The total nitrogen (TN) removal efficiency was 81.7%, resulting 7.3 mg L-1 TN was discharged from the system. The biogas yield was 0.222 NL g-1 COD removed with a methane content range of 78-81%. Approximately 90% of influent COD was removed in the SAnMBR, and 70% of influent nitrogen was removed in the PN/A. The denitrification which occurred in the PN/A enhanced overall COD and nitrogen removal. The successful operation of this pilot-scale plant indicates the SAnMBR-PN/A process is suitable for treating real municipal wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available