4.7 Article

Microtubule associated proteins as targets for anticancer drug development

Journal

BIOORGANIC CHEMISTRY
Volume 116, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bioorg.2021.105320

Keywords

Microtubule associated proteins; Cancer chemotherapeutics; Tubulin; Histone deacetylase; Histone acetyl transferase

Funding

  1. CSIR
  2. DST as Indo-Italian Bilateral Project [GAP-392]

Ask authors/readers for more resources

The dynamic equilibrium of tubulin-microtubule is crucial for cell survival, making it an important target for cancer drug development. Microtubules play essential roles in mitosis and cell multiplication, while MAPs interact with microtubules to affect their stability. Post-translational modifications of lysine-40 and HDAC inhibitors have significant roles in gene expression and anticancer properties, respectively.
The dynamic equilibrium of tubulin-microtubule is an essential aspect of cell survivality. Modulation of this dynamics has become an important target for the cancer drug development. Tubulin exists in the alpha-beta dimer form which polymerizes to form microtubule and further depolymerizes back to tubulin dimer. The microtubule plays an essential role in mitosis and cell multiplication. Antitubulin drugs disturb the microtubule dynamics which is essentially required for DNA segregation and cell division during mitosis so killing the cancerous cells. Microtubule Associated Proteins (MAPs) interact with cellular cytoskeletal microtubules. MAPs bind to the either polymerized or depolymerized tubulin dimers within the cell and mostly causing stabilization of microtubules. Some of the tubulin binding drugs are in clinical use and others in clinical trial. MAPs inhibitors are also in clinical trial. Post-translational modification of lysine-40 either in histone or in alpha tubulin has an important role in gene expression and is balanced between histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDAC inhibitors have the anticancer properties to form a drug for the treatment of cancer. They act by inducing cell cycle arrest and cell death. Some of the HDAC inhibitors are approved to be used as anticancer drug while others are under different phases of clinical trial. The present review updates on various MAPs, their role in cancer progression, MAPs inhibitors and their future prospects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available