4.7 Article

CYP450 drug inducibility in NAFLD via an in vitro hepatic model: Understanding drug-drug interactions in the fatty liver

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 146, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2021.112377

Keywords

Non-alcoholic fatty liver disease; Lipid accumulation; Primary human hepatocyte; CYP450; Drug metabolism; Drug-drug interaction

Funding

  1. National Institutes of Health [NIH 5R01EB023812, NIH 5R01HL145031, NIH 1R21GM136002, NIH R21AI142415, NIH R01DK114506]
  2. Massachusetts General Hospital (MGH) Executive Committee on Research (ECOR) Interim Support Fund

Ask authors/readers for more resources

This study investigates the impact of fatty liver on drug-drug interactions. Dysregulation of enzyme systems observed in fatty liver may increase the risk of unexpected drug interactions. An in vitro model was developed to study enzyme regulation in fatty liver, and it was found that fatty liver might exacerbate drug interactions related to CYP2B6 and CYP2C9 enzymes.
Drug-drug-interactions (DDIs) occur when a drug alters the metabolic rate, efficacy, and toxicity of concurrently used drugs. While almost 1 in 4 adults now use at least 3 concurrent prescription drugs in the United States, the Non-alcoholic fatty liver disease (NAFLD) prevalence has also risen over 25%. The effect of NALFD on DDIs is largely unknown. NAFLD is characterized by lipid vesicle accumulation in the liver, which can progress to severe steatohepatitis (NASH), fibrosis, cirrhosis, and hepatic carcinoma. The CYP450 enzyme family dysregulation in NAFLD, which might already alter the efficacy and toxicity of drugs, has been partially characterized. Nevertheless, the drug-induced dysregulation of CYP450 enzymes has not been studied in the fatty liver. These changes in enzymatic inducibility during NAFLD, when taking concurrent drugs, could cause unexpected fatalities through inadvertent DDIs. We have, thus, developed an in vitro model to investigate the CYP450 transcriptional regulation in NAFLD. Specifically, we cultured primary human hepatocytes in a medium containing free fatty acids, high glucose, and insulin for seven days. These cultures displayed intracellular macro-steatosis after 5 days and cytokine secretion resembling NAFLD patients. We further verified the model's dysregulation in the transcription of key CYP450 enzymes. We then exposed the NAFLD model to the drug inducers rifampicin, Omeprazole, and Phenytoin as activators of transcription factors pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR), respectively. In the NAFLD model, Omeprazole maintained an expected induction of CYP1A1, however Phenytoin and Rifampicin showed elevated induction of CYP2B6 and CYP2C9 compared to healthy cultures. We, thus, conclude that the fatty liver could cause aggravated drug-drug interactions in NAFLD or NASH patients related to CYP2B6 and CYP2C9 enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available