4.6 Article

Arrhythmia classification of LSTM autoencoder based on time series anomaly detection

Journal

BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Volume 71, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2021.103228

Keywords

Heartbeat classification; Arrhythmia; Deep learning; LSTM; Autoencoder

Ask authors/readers for more resources

The Electrocardiogram (ECG) is widely used for diagnosing heart diseases due to its non-invasiveness and simplicity. Various methods, including Autoencoders, have been utilized for automatic arrhythmia classification. However, some traditional methods are complex and difficult to understand, prompting researchers to optimize new approaches for better performance.
Electrocardiogram (ECG) is widely used in the diagnosis of heart disease because of its noninvasiveness and simplicity. The time series signals contained in the signal are usually obtained by the professional medical staff and used for the classification of heartbeat diagnosis. Professional physicians can use the electrocardiogram to know whether the patient has serious congenital heart disease and whether there is an abnormal heart structure. A lot of work has been done to achieve automatic classification of arrhythmia types. For example, Autoencoder can obtain the time series characteristics of ECG signals and be used for ECG signal classification. However, some traditional methods are abstruse and difficult to understand in principle. In the classification of arrhythmias carried out in recent years, some researchers only use Autoencoder to provide structural characteristics, without giving too much explanation to the design reasons. Therefore, we optimized a new network layer design based on LSTM to obtain the autoencoder structure. This structure can cooperate with the ECG preprocessing process designed by us to obtain better arrhythmia classification effect. This method enables direct input of ECG signals into the model without complicated preprocessing such as manual parameter input. Also, it eliminates the gradient vanishing problem existing in traditional convolutional neural network. We used five different types of ECG data in MIT-BIH arrhythmia database and MIT-BIH supraventricular arrhythmia database: atrial premature beats (APB), left bundle branch block (LBBB), normal heartbeat (NSR), right bundle branch block (RBBB) and ventricular premature beats (PVC). High accuracy, precision and recall were obtained. Compared with traditional methods, this method has better performance in arrhythmia classification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available