4.5 Review

Bird aquaporins: Molecular machinery for urine concentration

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1863, Issue 10, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.bbamem.2021.183688

Keywords

Aquaporins; Bird; Countercurrent urine concentration; Aquaglyceroporins; Arginine vasotocin; Water channel

Funding

  1. department of medicine in University of Colorado School of Medicine

Ask authors/readers for more resources

Birds are unique among vertebrates in their ability to concentrate urine, with various aquaporins responsible for this process. Different subfamilies of AQPs in birds play distinct roles in water conservation, and recent studies have shown the expression of multiple AQPs in bird kidneys, highlighting their significance in water balance regulation.
Water conservation is one of the most challenging processes for terrestrial vertebrates and is necessary for their survival. Birds are the only vertebrate animals other than mammals that have the ability to concentrate their urine. Previously, we identified and characterized aquaporins (AQP)1-4 responsible for urine concentration in Japanese quail kidneys. Today, a total of 13 orthologs for these genes have been reported in birds. Bird AQPs can be classified into four subfamilies: 1) Classical AQPs (AQP0-5 and novel member, AQP4-like) that conserve the selectivity filter; 2) aquaglyceroporins (AQP3, 7, 9 and 10) that retain an aspartic acid residue in the second NPA box and expand the pore to accept larger molecules; 3) unorthodox AQPs (AQP11-12) which structurally resemble their mammalian counterparts; 4) AQP8-type, a subfamily that differs from mammalian AQP8. Interestingly, over the course of time, birds lost their mammalian counterpart AQP6 but obtained a novel AQP4-like aquaporin member. In quail and/or chicken kidneys, at least six AQPs are expressed. Quail AQP1 (qAQP1) is expressed in both cortical and medullary proximal tubules but is absent in the descending limb (DL) and the thick ascending limb (TAL), supporting our previous finding that the DL and TAL are water impermeable. AQP2, an arginine vasotocin (AVT)-sensitive water channel, is exclusively expressed in the principal cells of the collecting duct (CD). AQP4 is unlikely to participate in free water resorption from the collecting duct (CD), and only AQP3 may represent an exit pathway for water reabsorbed apically via AQP2. While AQP9 is not expressed in mammalian kidneys, AQP9 was recently found in chicken kidneys. This review summarizes the current knowledge of the structure, function and expression of bird AQPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available