4.5 Article

Social immunity in the honey bee: do immune-challenged workers enter enforced or self-imposed exile?

Journal

BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
Volume 76, Issue 2, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00265-022-03139-z

Keywords

Cuticular hydrocarbons; Evolutionary immunology; Social immunity; Hygienic behaviour; Lipopolysaccharide

Funding

  1. Australian Research Council [DP170100772]

Ask authors/readers for more resources

The study shows that immune-challenged honey bees tend to voluntarily leave the hive, while healthy worker bees also actively evict immune-stimulated bees, possibly to limit the spread of pathogens within the colony. Through chemical signals, bees are able to identify and banish sick individuals, demonstrating a form of social immunity in action.
Animals living in large colonies are especially vulnerable to infectious pathogens and may therefore have evolved additional defences. Eusocial insects supplement their physiological immune systems with 'social immunity', a set of adaptations that impedes the entrance, establishment, and spread of pathogens in the colony. We here find that honey bee workers (Apis mellifera) that had been experimentally immune-challenged with bacterial lipopolysaccharide (LPS) often exited the hive and subsequently died; some individuals were dragged out by other workers, while others appeared to leave voluntarily. In a second experiment, we found that healthy workers treated with surface chemicals from LPS-treated bees were evicted from the hive more often than controls, indicating that immune-challenged bees produce chemical cues or signals that elicit their eviction. Thirdly, we observed pairs of bees under lab conditions, and found that pairs spent more time apart when one member of the pair had received LPS, relative to controls. Our findings suggest that immune-challenged bees altruistically banish themselves, and that workers evict sick individuals which they identify using olfactory cues, putatively because of (kin) selection to limit the spread of pathogens within colonies. Significance statement Just as in humans, animals living in large groups must contend with infectious diseases. Social insects such as honey bees have evolved a range of behavioural and organisational defences against disease, collectively termed 'social immunity'. Here, we describe experiments in which we introduced immune-stimulated bee workers into hives to study social immunity. We find that bees that were wounded or immune-challenged were more likely to leave the hive-resulting in their death-compared to healthy controls. Some of the bees leaving the hive were ejected by other workers, while some left the hive seemingly by choice: we thus find evidence for both 'banishment' of immune-challenged bees and self-imposed exile. Furthermore, using experiments transferring chemical signals between healthy and immune stimulated bees, we establish that the latter are identified for banishment by the chemicals present on their body surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available