4.7 Article

Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions

Journal

ASTROPHYSICAL JOURNAL
Volume 921, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-4357/ac1f1c

Keywords

-

Funding

  1. NASA [NNN06AA01C]
  2. STFC Consolidated Grant [ST/S000240/1]
  3. STFC Ernest Rutherford Fellowship [ST/P003826/1]

Ask authors/readers for more resources

This study investigates the electrostatic contribution to solar wind dynamics using data from the Parker Solar Probe, estimating the ambipolar electric field and potential. The analysis reveals a suprathermal electron deficit in the near-Sun solar wind, corresponding to a predicted cutoff energy in collisionless exospheric models. The findings are consistent with theoretical expectations and suggest a decrease in electrostatic acceleration with radial distance.
The solar wind escapes from the solar corona and is accelerated, over a short distance, to its terminal velocity. The energy balance associated with this acceleration remains poorly understood. To quantify the global electrostatic contribution to the solar wind dynamics, we empirically estimate the ambipolar electric field (E (parallel to)) and potential (phi(r,infinity)). We analyze electron velocity distribution functions (VDFs) measured in the near-Sun solar wind between 20.3 R (S) and 85.3 R (S) by the Parker Solar Probe. We test the predictions of two different solar wind models. Close to the Sun, the VDFs exhibit a suprathermal electron deficit in the sunward, magnetic-field-aligned part of phase space. We argue that the sunward deficit is a remnant of the electron cutoff predicted by collisionless exospheric models. This cutoff energy is directly linked to phi(r,infinity). Competing effects of E-parallel to and Coulomb collisions in the solar wind are addressed by the Steady Electron Runaway Model (SERM). In this model, electron phase space is separated into collisionally overdamped and underdamped regions. We assume that this boundary velocity at small pitch angles coincides with the strahl break-point energy, which allows us to calculate E-parallel to. The obtained phi(r,infinity) and E (parallel to) agree well with theoretical expectations. They decrease with radial distance as power-law functions with indices alpha(phi) = -0.66 and alpha(E) = -1.69. We finally estimate the velocity gained by protons from electrostatic acceleration, which equals 77% calculated from the exospheric models, and 44% from the SERM model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available