4.8 Article

The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation: Structure-dependent oxidation pathways

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 297, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120460

Keywords

Molybdenum disulfide; Peroxymonosulfate; Peroxydisulfate; Butyl paraben; Homojunctions

Funding

  1. National Natural Science Foundation of China [51778598, 51808524, 51478449]

Ask authors/readers for more resources

This study investigated the mechanistic difference of 1 T-2H MoS2 homojunctions in catalytic activation of peroxymonosulfate (PMS) for degrading butyl paraben (BPB), finding that PMS/1 T-2H MoS2 showed higher performance in BPB removal, with (OH)•-induced BPB removal being the top priority for both PMS/1 T-2H MoS2 and PDS/1 T-2H MoS2. The different activation pathways and reactive species resulted in varying BPB removal, by-product distributions, and toxicity.
Two-dimensional layered MoS2 recently demonstrates great potentials in water purification via adsorption and catalysis. The structure-catalysis relationship of MoS2 has not been well addressed. Herein, we investigated the mechanistic difference of 1 T-2H MoS2 homojunctions in catalytic activation of peroxymonosulfate (PMS) and peroxydisulfate (PDS) for degrading butyl paraben (BPB). PMS/1 T-2H MoS2 attains higher performance in BPB removal compared to PDS/1 T-2H MoS2. 1 T phase in MoS2 primarily contributed to PMS activation to produce SO4 center dot-, (OH)-O-center dot and O-1(2), while the defects in MoS 2 coordinated the PDS activation to generate (OH)-O-center dot, O-1(2) and O-2(center dot)-. Nevertheless, (OH)-O-center dot-induced BPB removal was the top priority for PMS/1 T-2H MoS2 and PDS/1 T-2H MoS2. The different activation pathways and reactive species resulted in the varying BPB removal, by-product distributions and toxicity. This work provides new insights into the different functions of MoS2 in persulfates activation and the guidance in rational design of oxidant-oriented MoS2 composites for sewage purification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available