4.8 Article

In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 301, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120802

Keywords

AgBr/BiOBr; Oxygen vacancy; S-scheme heterojunction; Photocatalytic CO2 reduction

Funding

  1. National Natural Science Foundation of China [21973025, 21673043, 21801059]
  2. Natural Science Founda-tion of Hebei of China [B2019205061, B2020205013]
  3. Science and Technology Project of Hebei Normal University of China [L2021K01]
  4. Postgraduate Innovation Foundation of Hebei Normal University of China [CXZZSS20211055]

Ask authors/readers for more resources

In this study, an AgBr/BiOBr heterojunction with surface oxygen vacancies was synthesized using a simple chemical method, which showed significantly improved photoreduction rates of CO2 compared to pure BiOBr. The unique S-scheme band structure and oxygen vacancies were found to enhance the utilization of sunlight and increase the separation and transfer of photogenerated charge carriers, leading to efficient photocatalytic reduction of CO2.
S-scheme heterojunction has attracted much attention due to its unique structure and interface interaction. Herein, AgBr/BiOBr heterojunction with surface oxygen vacancies (OVs) was in situ synthesized by a facile chemical method. It was found that the evolution rates of photoreduction of CO2 to CO and CH4 with 0.33AB are 212.6 and 5.7 mu mol g(-1) h(-1) respectively, which are 9.2 and 5.2 times higher than those of pure BiOBr. It was demonstrated that the S-scheme band structure could improve the utilization of sunlight, increase the reduction power of photogenerated electrons, and enhance the separation and transfer of photogenerated charge carriers. Furthermore, the OVs on the surface of BiOBr for AgBr/BiOBr heterojunction are conductive to the adsorption and activation of CO2 molecules. The synergetic effect of S-scheme band structure and OVs on photocatalytic reduction of CO2 was discussed. The work provides a facile method for in situ construction of S-scheme heterojunction with defect for CO2 photoreduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available