4.8 Article

Polyacrylonitrile-Coordinated Perovskite Solar Cell with Open-Circuit Voltage Exceeding 1.23 V

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 61, Issue 8, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202113932

Keywords

Lead; Open-circuit voltage; Perovskites; Polyacrylonitrile; Solar Cells

Funding

  1. Natural Science Foundation of Shandong Province [ZR2020KB001, ZR2018ZB0315]
  2. Youth Innovation Promotion Association CAS [Y201944]
  3. National Science Fund for Excellent Young Scholars [51822209]
  4. Shandong Energy Institute [SEI I202129]

Ask authors/readers for more resources

Introducing polyacrylonitrile (PAN) for passivating uncoordinated lead cations in perovskite films has been successful in improving device efficiency and open-circuit voltage, increasing ion migration activation energy, and enhancing operational stability.
In solution-processed organic-inorganic halide perovskite films, halide-anion related defects including halide vacancies and interstitial defects can easily form at the surfaces and grain boundaries. The uncoordinated lead cations produce defect levels within the band gap, and the excess iodides disturb the interfacial carrier transport. Thus these defects lead to severe nonradiative recombination, hysteresis, and large energy loss in the device. Herein, polyacrylonitrile (PAN) was introduced to passivate the uncoordinated lead cations in the perovskite films. The coordinating ability of cyano group was found to be stronger than that of the normally used carbonyl groups, and the strong coordination could reduce the I/Pb ratio at the film surface. With the PAN perovskite film, the device efficiency improved from 21.58 % to 23.71 % and the open-circuit voltage from 1.12 V to 1.23 V, the ion migration activation energy increased, and operational stability improved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available