4.8 Article

Interfacial Fe-O-Ni-O-Fe Bonding Regulates the Active Ni Sites of Ni-MOFs via Iron Doping and Decorating with FeOOH for Super-Efficient Oxygen Evolution

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 61, Issue 17, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202116934

Keywords

Electrocatalytic Performance; Fe-O-Ni-O-Fe Bonding; FeOOH Decoration; Iron Dopant; Oxygen Evolution Reaction

Funding

  1. NSFC [91645104, 21821003]
  2. Fundamental Research Funds for the Central Universities [YJ2021156]

Ask authors/readers for more resources

This study demonstrates the integration of Fe dopant and interfacial FeOOH into Ni-MOFs, forming Fe-O-Ni-O-Fe bonding, which elucidates the remarkable electrocatalytic performance of Ni-MOFs. The Fe-O-Ni-O-Fe bonding facilitates the distorted coordinated structure of the Ni site and regulates the adsorption behavior of key intermediates. The Fe-doped-(Ni-MOFs)/FeOOH with interfacial Fe-O-Ni-O-Fe bonding exhibits superior catalytic performance for OER with low overpotential and excellent stability.
The integration of Fe dopant and interfacial FeOOH into Ni-MOFs [Fe-doped-(Ni-MOFs)/FeOOH] to construct Fe-O-Ni-O-Fe bonding is demonstrated and the origin of remarkable electrocatalytic performance of Ni-MOFs is elucidated. X-ray absorption/photoelectron spectroscopy and theoretical calculation results indicate that Fe-O-Ni-O-Fe bonding can facilitate the distorted coordinated structure of the Ni site with a short nickel-oxygen bond and low coordination number, and can promote the redistribution of Ni/Fe charge density to efficiently regulate the adsorption behavior of key intermediates with a near-optimal d-band center. Here the Fe-doped-(Ni-MOFs)/FeOOH with interfacial Fe-O-Ni-O-Fe bonding shows superior catalytic performance for OER with a low overpotential of 210 mV at 15 mA cm(-2) and excellent stability with approximate to 3 % attenuation after a 12 h cycle test. This study provides a novel strategy to design high-performance Ni/Fe-based electrocatalysts for OER in alkaline media.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available