4.8 Article

Dual-Stage Neutral Loss Tandem Mass Spectrometric Strategy for Confident Identification of Protein Prenylation

Journal

ANALYTICAL CHEMISTRY
Volume 93, Issue 39, Pages 13169-13176

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.1c01617

Keywords

-

Funding

  1. UT-Arlington chemistry and biochemistry department

Ask authors/readers for more resources

The study introduced a dual-stage neutral loss MS3 strategy for improving the large-scale identification of protein prenylation. This strategy enhances the confidence in identifying prenylation sites without prior enrichment of samples, facilitating the study of prenylation and further development in the profiling and quantification of the prenylome.
Protein prenylation is an important post-translational modification that regulates protein interactions, localizations, and signaling pathways in normal functioning of eukaryotic cells. It is also a critical step in the oncogenic developments of various cancers. Direct identification of native protein prenylation by mass spectrometry (MS) has been challenging due to high hydrophobicity and the lack of an efficient enrichment technique. Prior MS studies of prenylation revealed that prenyl peptides readily generate high-intensity fragments after neutral loss of the prenyl group (R group), and more recent investigation of oxidized prenyl peptides discovered more consistent neutral loss of the oxidized prenyl group (RSOH group). Here, a dual-stage neutral loss MS3 (DS-NLMS3)-based strategy is therefore developed by combining both gas-phase cleavable properties of the prenyl thioether bond and mono-oxidized thioether to improve the large-scale identification of prenylation. Both neutral losses can individually and distinctively confirm the prenylation type in MS2 and the sequence of the prenyl peptide upon targeted MS3 fragmentation. This dual-faceted NLMS3 strategy significantly improves the confidence in the identification of protein prenylation from large-scale samples, which enables the unambiguous identification of prenylated sites of the spiked low-abundance farnesyl peptide and native prenyl proteins from mouse macrophage cells, even without prior enrichment during sample preparation. The ease of incorporating this strategy into the prenylation study workflow and minimum disruption to the biological lipidome are advantageous for unraveling unknown native protein prenylation and further developments in profiling and quantifying prenylome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available